Fiber orientations from diffusion MRI and histology in the macaque brain

Charles Chen¹, Stamatios N. Sotiropoulos², Krikor Dikranian¹, David C. Van Essen¹, and Matthew F. Glasser¹

Diffusion MRI and tractography

- Top : Streamline density maps from human and post-mortem macaque
- Bottom : Tracer injections from macaque

Van Essen et al (2013), in press

Insights from histology

Van Essen et al (2013), in press

Tractography predictions

Parasagittal MRI slice

Gryral blade What may exist (if we are lucky)

Diffusion imaging orientations

D

Tractography streamlines

Π

Insights from histology

Fiber orientations near cortex

Comparing DTI and histology

Van Essen et al (2013), in press

Summary

- Diffusion MRI and tractography are powerful tools for generating connectomes
- However, they suffer from technical limitations, such as resolving gyral biases
- Tractography algorithms can be informed through histological data
- Fiber estimates can only be improved through better acquisition

Supplementary Slides

Histology

A postnatal day 6 macaque brain. Sections were immunostained with antibody to myelin basic protein (MBP, MAB395, Millipore) and scanned on a NanoZoomer 2 (Hamamatsu) scanning microscope equipped with Olympus lens at 20X (0.9225 um x 0.9225 um² resolution).

A modified Gallyas myelin stained section from an adult macaque brain was also digitized in a similar fashion*.

Post-mortem Diffusion MRI**

A diffusion-weighted MRI dataset of a perfusion-fixed adult macaque brain was acquired using a 4.7 T Bruker scanner.

Scans were performed using a 3D multi-shot, spin-echo sequence (with in-plane resolution $430 \times 430 \text{ um}^2$, TE = 33 ms, TR = 350 ms)

120 DW directions at b=8000 s/mm², 17 b=0 s/mm², 128 slices with a thickness of 430 um.

* Data are courtesy of JL Price, WashU, School of Medicine ** Data from [D'Arceuil et al, NeuroImage 35:553-565, 2007]

Van Essen and Maunsell, (1980)

Gyral vs sulcal wedges: Cortical volume per unit area of gray/white surface

Parametric Spherical Deconvolution

Assuming mono-exponential decay in q-space: [Behrens et al, MRM 2003], [Kaden et al, NeuroImage 2007]

$$S_k = S_0 \left[(1 - f) \exp(-b_k d) + f \int_0^{2\pi} \int_0^{\pi} H(\theta, \phi) \exp(-b_k d(\mathbf{g}_k^T \mathbf{v})^2) \sin\theta d\theta d\phi \right]$$

If the fODF is modelled as a Delta function (or sum of Delta functions), we get the ball & stick model [Behrens et al, MRM 2003, NeuroImage 2007]:

$$S_k = S_0 \left[(1 - f) \exp(-b_k d) + f \exp(-b_k \boldsymbol{g}_k^T \boldsymbol{v})^2) \right]$$

Structure Tensor Analysis

Given an image I(x, y) and its spatial gradient vector

$$abla I = \begin{bmatrix} I_x & I_y \end{bmatrix}^T$$
spatial partial derivative along f

(Gaussian smoothed)

The 2x2 gradient tensor is: $Q = \nabla I \cdot \nabla I^T = [q_{ij}]$

The 2x2 *structure tensor* is:
$$S = [s_{ij}], \ s_{ij} = g_{\sigma,w} * \{q_{ij}\}$$

Gaussian filter with window size w

and spatial scale σ

The eigenvector of the structure tensor associated with the smallest eigenvalue gives the *coherence* direction.

Comparing DTI and Histology

